svymultinom
uses the withReplicates function to compute the replicate-based
estimate of the variance-covariance matrix of coefficients for a multinomial regression fitted by
multinom.
svymultinom(formula = NULL, weights = NULL, data = NULL) # S3 method for svymultinom coef(object, ...) # S3 method for svymultinom vcov(object, ...) # S3 method for svymultinom formula(x, ...) # S3 method for svymultinom predict(object, ...) # S3 method for svymultinom model.frame(formula, ...) # S3 method for svymultinom print(x, ...) # S3 method for svymultinom summary(object, ...) # S3 method for summary.svymultinom print(x, digits = 4, ...) # S3 method for svymultinom update(object, ..., evaluate = TRUE)
formula | regression formula |
---|---|
weights | weights for regression |
data | dataset for regression |
object | an object of class 'svymultinom' |
... | additional arguments |
x | an object of class 'svymultinom' |
digits | minimal number of significant digits. See print.default. |
evaluate | a logical value. If |
An object of class svymultinom
is returned:
the function call,
the naive multinomial regression object,
the replicate-based estimate of the variance-covariance matrix of coefficients,
coef(svymultinom)
: Extract coefficients
vcov(svymultinom)
: Extract the var-cov matrix of coefficients
formula(svymultinom)
: Extract the regression formula
predict(svymultinom)
: Predict with new data
model.frame(svymultinom)
: Extract the model frame
print(svymultinom)
: Print results of svymultinom
nicely
summary(svymultinom)
: Summarize results of svymultinom
nicely
update(svymultinom)
: Update svymultinom
print(summary.svymultinom)
: Print summary of svymultinom
nicely
if (FALSE) { rm(list=ls()) library(CMAverse) # multinom n <- 1000 x1 <- rnorm(n, mean = 0, sd = 1) x2 <- rnorm(n, mean = 1, sd = 1) x3 <- rbinom(n, size = 1, prob = 0.4) linearpred1 <- 1 + 0.3 * x1 - 0.5 * x2 - 0.2 * x3 linearpred2 <- 2 + 1 * x1 - 2 * x2 - 1 * x3 py2 <- exp(linearpred1) / (1 + exp(linearpred1) + exp(linearpred2)) py3 <- exp(linearpred2) / (1 + exp(linearpred1) + exp(linearpred2)) py1 <- 1 - py2 - py3 y <- sapply(1:n, function(x) sample(size = 1, c(1:3), prob = c(py1[x], py2[x], py3[x]))) w <- ifelse(x3 == 0, 0.4, 0.6) data <- data.frame(x1 = x1, x2 = x2, x3 = x3, y = y) reg <- svymultinom(y ~ x1 + x2 + x3, weights = w, data = data) coef(reg) vcov(reg) formula(reg) predict(reg, newdata = data[1, ], type = "probs") model.frame(reg) summary(reg) update(reg, weights = w[1:500], data = data[1:500, ]) }